Zinc potentiates neuronal nicotinic receptors by increasing burst duration.
نویسندگان
چکیده
Micromolar zinc potentiates neuronal nicotinic acetylcholine receptors (nAChRs) in a subtype-dependent manner. Zinc potentiates receptor function even at saturating agonist concentrations, without altering the receptor desensitization rate. Potentiation could occur through an increase in the number of available receptors, an increase in single-channel current amplitude, or an increase in single-channel open probability. To distinguish among these possibilities, we examined rat neuronal nAChRs expressed in Xenopus oocytes. Blockade of a large fraction of ACh activated alpha4beta4 or alpha4beta2 receptors by the open channel blocker hexamethonium failed to change the extent of potentiation by zinc, suggesting that zinc does not change the number of available receptors. The single-channel amplitudes of ACh (1 microM) activated alpha4beta4 receptors in outside-out patches were similar in the absence and the presence of 100 microM zinc (3.0 +/- 0.1 and 2.9 +/- 0.1 pA, respectively). To determine the effect of zinc on single-channel open probability, we examined alpha4beta4 receptors in cell-attached patches. The open probability at 100 nM ACh (0.011 +/- 0.002) was increased 4.5-fold by 100 microM zinc (0.050 +/- 0.008), accounting for most of the potentiation observed at the whole cell level. The increase in open probability was due to an increase in burst duration, which increased from 207 +/- 38 ms in the absence of zinc to 830 +/- 189 ms in the presence of zinc. Our results suggest that potentiation of neuronal nAChRs by zinc is due to a stabilization of the bursting states of the receptor.
منابع مشابه
Single-channel analyses of ethanol modulation of neuronal nicotinic acetylcholine receptors.
BACKGROUND We have previously reported that ethanol potentiates the acetylcholine-induced currents of the alpha4beta2 neuronal nicotinic acetylcholine receptors in rat cortical neurons and of those that are stably expressed in human embryonic kidney cells. The potentiation of the maximal currents evoked by high concentrations of acetylcholine suggests that ethanol affects the channel gating. ...
متن کاملModulation of the neuronal nicotinic acetylcholine receptor-channel by the nitromethylene heterocycle imidacloprid.
Nitromethylene heterocycle insecticides are known to act on the nicotinic acetylcholine receptor-channel. The effects of the nitromethylene heterocycle, imidacloprid, on the nicotinic acetylcholine receptor-channel of clonal rat phaeochromocytoma (PC12) cells were studied using whole-cell and single-channel patch clamp methods. Imidacloprid suppressed carbachol-induced whole-cell currents in a ...
متن کاملSubunit-dependent modulation of neuronal nicotinic receptors by zinc.
We examined the effect of zinc on rat neuronal nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes as simple heteromers of alpha2, alpha3, or alpha4 and beta2 or beta4. Coapplication of zinc with low concentrations of acetylcholine (</=EC(10)) resulted in differential effects depending on receptor subunit composition. The alpha2beta2, alpha2beta4, alpha3beta4, alpha4beta2, a...
متن کاملDeterminants of zinc potentiation on the alpha4 subunit of neuronal nicotinic receptors.
We have shown previously that the function of neuronal nicotinic acetylcholine receptors can be modulated by zinc. This modulation varies from potentiation to inhibition, depending on receptor subunit composition and zinc concentration, with the alpha4beta2 and alpha4beta4 receptors displaying the most dramatic potentiation. In this study, we used site-directed mutagenesis to identify glutamate...
متن کاملSingle-channel properties of α3β4, α3β4α5 and α3β4β2 nicotinic acetylcholine receptors in mice lacking specific nicotinic acetylcholine receptor subunits
Previous attempts to measure the functional properties of recombinant nicotinic acetylcholine receptors (nAChRs) composed of known receptor subunits have yielded conflicting results. The use of knockout mice that lack α5, β2, α5β2 or α5β2α7 nAChR subunits enabled us to measure the single-channel properties of distinct α3β4, α3β4α5 and α3β4β2 receptors in superior cervical ganglion (SCG) neurons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 99 2 شماره
صفحات -
تاریخ انتشار 2008